大数据的本质是什么

养乐多 问答 2019-07-24 10:23:02 阅读(...)

从本质上讲,大数据是指按照一定的组织结构连接起来的数据,是非常简单而且直接的事物,但是从现象上分析,大数据所呈现出来的状态复杂多样,这是因为现象是由观察角度决定的。

从本质上讲,大数据是指按照一定的组织结构连接起来的数据,是非常简单而且直接的事物,但是从现象上分析,大数据所呈现出来的状态复杂多样,这是因为现象是由观察角度决定的。

大数据

大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。

它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

对于“大数据”(Big data)研究机构 Gartner 给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。

麦肯锡全球研究所给出的定义是:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。

随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像 MapReduce 一样的框架来向数十、数百或甚至数千的电脑分配工作。

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

0个人收藏 收藏

评论交流

泪雪默认头像 请「登录」后参与评论
  1. 加载中..

相关推荐

  • Industrial Internet

    什么是工业互联网

    工业互联网是全球工业系统与高级计算、分析、感应技术以及互联网连接融合的一种结果。工业互联网的本质是通过开放的、全球化的工业级网络平台把设备、生产线、工厂、供应商、产品和客户紧密地连接和融合起来,高效共享工业经济中的各种要素资源。
  • 大数据分析 Big Data Analysis

    大数据分析工具有哪些

    开源大数据分析工具有:Superset、Redash、Metabase、CBoard、Davinci、SpagoBI、Pentaho等;商业大数据分析工具有:FineBI、QlikView、Tableau、Power BI、SmartBI、QuickBI等。
  • 大数据分析 Big Data Analysis

    大数据分析软件有哪些

    开源BI工具有:Superset、Redash、Metabase、CBoard、Davinci、SpagoBI、Pentaho等等;商业BI工具有:FineBI、QlikView、Tableau、Power BI、SmartBI、QuickBI等等。
  • iPhone

    苹果手机怎么关闭大数据监听

    苹果手机关闭大数据监听可在手机上打开设置,在设置界面里,点击进入隐私界面,在隐私界面里,点击进入研究传感器与使用数据界面,然后将传感器与使用数据收集功能关闭即可。
  • 安全大数据 Secure big data

    什么是大数据

    大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
  • 安全大数据 Secure big data

    安全大数据是什么

    安全大数据是指与业务安全、系统安全、网络安全、硬件安全的配置数据、实时数据、衍生数据等,可归类为资产数据、威胁数据、脆弱性数据和网络结构数据,同时不考虑数据类之间的关系。利用数据挖掘技术提取出隐含在其中能标识业务、系统、网络安全的潜在信息。